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INTRODUCTION

VTOL or STOL tilted-wing aircraft may, in certain takeoff and landing
conditions, operate close to the ground with at least some parts of the wings
in a high-velocity stream behind the propellers. The wake behind the wing
is deflected by the ground and the vortices shed by the wing then follow a
curved path along the streamlines. It was thought that there may be some
i nter es t in investigating qualitatively the influence of this deflection on the
flutt er derivatives to see how much they differ from the derivatives in the
absence of ground effect and I hus have a certain indication how much they
can influence the flutter velocity.

To simplify the analysis, looking for a qualitative estimate a linearized,
t wo-dimensional, incompressible, nonviscous flow was considered and it
was assumed that the airfoil is very thin and shed vortices follow 1 he mean
st reamline which is taken as undisturbed by the presence of the airfoil. The
effect of stream boundaries out the nonstationary forces is neglected.

ANALYTICAL FORMULATION OF THE PROBLEM

The geometric configuration and notation is indicated in Fig. 1, where
he airfoil semichord b is taken as the unit length.

The normal velocity on the airfoil is assumed to vary according to the
following law:

w(x)
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where w is the circular frequency of the airfoil and the positive directions
of the velocity components are the same as those of the appropriate
coordinate axis.

Possio's integral equation, as shown for example by Garrick [1], giving
the relation between the normal velocity and the "reduced" pressure
difference is

+1
w(x) = k f  y(E)  K (x ) A (1)

where k = wb/U is the reduced frequency, U the undisturbed flow velocity
at infinity, K = kernel given in Eq. (3). The pressure difference on the
airfoil is given by:

P = — pUy(E) e0t (2)

The velocity components parallel to the airfoil surface are taken as constant
and equal  U.

In the assumed case of incompressible flow -y(E) is the so-called bound
vorticity.
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Figure 1.
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The kernel of Eq. (1), K(x , E) is defined so as to be equal to the induced

flow velocity at point x due to a vortex of intensity b/k located at point

together with its adjoint free vortices, and it has the following form:

1  [  1
1f [  1 


K(x,0 — f(x,d — e e '
ark x — 2r x — n

co —ikr(s)
e 


+ f o
i

ddn — —27 e
f

1 u(s)
F(x,$) ds (3)

r(s) is defined in Eq. (6). The ground effect, in the above formula, is

given by

2(H — x sin i3) sini3 — (x — 0 cos 20

	

f (x , = (4)
(x — + 4(H — x sin 0) (H — sini3)

expressing the influence of the ground on the normal velocity component

at x induced by a vortex at point E, and by:

F (x s)
[xo(s) — x cosi3 ] cos [H — x sin f3 yo(s)] sin  13

= , 

[x0(s) — x cos [H — x sin 13 yo(s) ]2

P[xo(s) — x cosi31 cosß [H — x sin f3 — yo(s) ] sin 13
 [x0(s) — x cos O]2 [H — x sin 0 — yo(s) ]2

expressing the influence of a vortex, located in the wake at a point whose

coordinates are xo(s), !Ms), on the normal velocity component at the point

x of the airfoil.
Calling Uu(s) the velocity of vortex entrainment equal to the velocity

on the streamline passing through the trailing edge in steady flow and t(s)
the time necessary for a vortex to pass from the center of the airfoil to a

point given by the coordinate s measured along the streamline, there exists

the following relation between these two magnitudes:

	

dsU
r(s) = f= — t(s)

	

0 u(s)b



In the expression for the kernel, Eq. (3), the first term corresponds to
the influence of the bound vortex at point E, the second term to the free

vortices on the airfoil and the third term to the free vortices in the wake.

The first components of the first and second terms are the ones usually
encountered in derivative calculations.
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For convenience, instead of t(s) we will use the following magnitude,
which may be interpreted as a "phase displacement":

c(s) = = f  8(1 1 ds
0 u(s) (7)

and introduce the notation:

5 = k(x — s)

and

eik“.9)
Fi(x ,$) = 	 F(x,$) —

u(s)

Adding and subtracting from the formula of the kernel, Eq. (3) the follow-
ing magnitude,

ie f e- iks

2ir J1 x — sds
(9)

the following convenient expression for the kernel is obtained:

1 

K(x,E) = K0(5) 27rk {f(x,E) — ike

[
1

f
f+

f F1(x,$) e-iks dd} (10)

where

1 se 


K0(5) = —
2irô27r

{C,(6) i  [Si(S)  +(11)

is the known kernel of Possio's integral equation for an isolated airfoil in
the case of incompressible flow [1].

Introducing in Eq. (1) relation (10), the following integral equation for
the determination of -y(E) is obtained:

+1
w (x) = K f K 0( ) dE + —1 f 'Y(

)

P
27r _1

+7
— ike'“ f e'" f (x,n) dddE — D(x) 7(E) e dE  (12)

27r

1

—

(8)
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where

D(x) = f F1(x,$) ds (13)

This last expression takes into account the modification, of the part of
the induced velocity due to the wake, caused by the ground proximity.

ADDITIONAL WAKE INFLUENCE DUE TO GROUND PROXIMITY

The integral in Eq. (13) is a function of x only determined by the
geometry of the system in particular by the shape and velocity distribution
of the streamline passing through the trailing edge of the airfoil.

Results obtained by Schach [2] were used to determine these last
magnitudes.

Denoting V = ue" and z = xo iyo the following relation was ob-
tained [2] :

dz 1 [

v(v-e) v(v _ C)

1 1 	 1 + cos 13 1 - cos 0]
dv v(v - 1) v(v + 1)

(14)
43 's

or

	

du + iuda = e-mbkr(u,a) ilki(u,a)] dz (15)

where

7 

[214 cos 4a - 2u cos0(u2 cos 3« - cos a) - 1] (16)

8 sin' ß

	

llt,i =   [u4sin 4« - 2u cosß (u2 sin 3« - sin a)] (17)
8 sin2 ß

Along a stream line

	

dz = e ds (18)

From Eqs. (15) and (18) the following system of differential equations is
obtained:

du
—ds= 4.,(u ,a) cos 2a + ifi,(u,a) sin 2a

da 1
—ds= 1-4 [(u'a) cos 2« - ikr(u,a) sin 2«

(19)



452 FOURTH CONGRESS — AERONAUTICAL SCIENCES

The initial values a(1) and u(1) are deduced from the integral of Eq. (15)
and relations given in Ref. 2. Knowingu(s) and a(s) the following coordi-
nates of the streamline passing through the trailing edge can be found:

x0(s)
=f

cos a ds xo(1)

Yo (s) = — f 'sin a ds  yo (1)

The system of Eq. (19) was integrated numerically using the 4th order
Runge-Kutta method [3], and the integrals of Eqs. (7) and (20), using
Simpson's method. Making use of calculated values of xo(s), yo(s), -(s) the
last integral of Eq. (12) was determined numerically by Filon's [4] method
for an upper limit of integration corresponding to

xou » H — x sin ß

As for larger distances yo yo„ const, xo s — c with c constant.,
- (s) = = const, u(s) = I and

2yo„ sin ß
F(x,$)

(s — c)2

This part of the integral can be determined in a closed form:

f„ {

r
Fi(x,$) e–'" ds = 2yo sin ße–'k (c–i-') k ( [k (s. — c)] —

2




CO

(su 01} +
}0

-ik (su-c)

ci[k (su — x)]

(22)

Su — C

SOLUTION OF POSSIO'S TYPE EQUATION

Equation (12) was solved by the widely used collocation method  [1].
The following series development of the "reduced" pressure difference

was applied:

7(0 = 2U [ao- 	 2\/1 —eE Un-i(-0] (23)NI 1 ± n
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where  U„  are Tchebyshev's polynomials of the second kind. As is well
known, the singularities of the kernel of Eq. (12) can be separated and some
of the corresponding integrals calculated in a closed form using known
methods—e.g., those given by Frazer [5]. The following results are thus
obtained:

+1 YQ)
.

f_i x — clE — 27rU [ao — 2 E clE T.(—x)]
n=i n

f+:7(E) in Ix— El dE = 271-U {ao(x —  1n2) + ai (1  T2(x)  — 1n2)
2

+ \L.' an [Tn + 1(x) Tn_i(—x)1}
(24)

n'__2 n n + 1 n — 1

where m is the number of terms of the series development chosen and T„
are Tchebyshev's polynomials of the first kind.

The remaining integrals are calculated using Gauss's method with

.\I
1 E and N/1 — E2 as weighting functions (see, for example, Krilov

1 +

et al., Ref. 6).
From the integral Eq. (12) the following set of linear equations for the

complex coefficients an of Eq. (23) is obtained:

w(x) E cinan
n=o

i = (1, . . .  nz  + 1)(25)

where m + 1 is the number of collocation points chosen.
The motions of the airfoil parallel to itself and rotation about its mid-

chord point according, respectively, to the relations:

h = hoe'
(26)

a = aoe Ct

will be considered. The corresponding amplitude of the velocity of point x
of the airfoil is:

w) w„(x) , Wa(x) 

U u  no  u ao = ikno + (1 + ikx) ao (27)

and the relevant an coefficients are:

an = a,,hho anaao (28)
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From the amplitude of the pressure, Eq. (2), following Garrick [1] the force
and moment coefficients deduced are:

A11 = R11 + fin = 2(a0h alh),

A 12 = R12 + 1112 = 2 (Chia ai.),

A21 — R21 4- 1/21 (aOh 12a2h),
(29)

A22 — R22 i/22 (ao., -1a2 ) •

The moment coefficients are calculated with reference to the half-chord
point.

DISCUSSION OF NUMERICAL RESULTS AND CONCLUSIONS

Numerical calculations were performed on the digital computer GIER.

The width of the air stream was taken equal to the airfoil chord.
Four collocation points were used and their positions were chosen in the

zeros of Tchebyshev's polynomials of the first kind.
Sample calculations made for three collocation points have shown that

taking them in the above-mentioned points gives much better results at
higher frequency coefficients than for an equal distribution of points.
Comparing results obtained for a limited number of calculations for 4 and
5 collocation points has shown that the largest differences obtained are
below four percent and occurred for the largest altitudes and frequency
parameters and are much smaller than one percent for lower parameters.

Calculations were made for the following parameters [7]:

Tilt angle (3 = 30°, 450, 60°, 75°

Height H = 2, 3, 4, 6, 10

Frequency parameter k = 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5.

It is noted that for heights below two chord lengths (H < 4) measured
from the midchord point, the results are less accurate, because of the large
deviations frOni the simplifying assumptions made, concerning the stream
line passing through the trailing edge and the velocity along the airfoil.

Comparative calculations were made for different simplifications con-
cerning the shape of stream line passing through the trailing edge which
was taken as straight with constant velocity distribution and the same
velocity distribution along the calculated curve stream line. The results
obtained show that the coefficientsR12, R22, Ill, /21 give the same results
independently of the above given assumptions. The other coefficients
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indicate large variations for altitudes  H < 6 and small angles of tilt and
H < 10 for large tilt angles.

The main results obtained are shown on the curves given in Figs. 2-5.
The direct force coefficientsRil for  k > 1  are nearly equal to the values

called classical, e.g., for  H = cc ,  this due to the predominating influence of
the adjoint mass at high frequencies; at lower values of the frequencies the
effect of the wake is most important and therefore large relative variations
of the small coefficients occur.

1

f/3 =30° 20 
 753

	 15 


•

10
•

7 ' -
05,

56788 23436;

Prf

ad)




ktype of hoe

e

Wee
9„817778verul6kefi6-e0

345078S V

—14

0056-0.010
01-,- 0 140
02—7:7--7—4- 00354

5 - I

Note As for k close tO 034 the volue of 6(c0
becomes cello tIle corresponaing P, , values tend
to infinity

Figure 2.

i T 1 1T

	

II
1 , ,,-, 1

20- • - _13 -30°  10
7.221

1- P'5°° '
20 .

‘ ,
•




.5-1V
5..

15  4- .-*•+.

.....,..........

. --I /5 I 


, \

. ,N....

\

p...::.,/wit.t—„,,........ 1: • •..:_;. *"....;:g ,.../.....;-'.•,;.g,IMIIIIMML.. ,0 	.. lae•-•,"7.,;.....774.4=7,1

.......--. ..i...........,

	

.0, ............ ..."., .......'"
 ••

I' / ......
05 	

,
t   0 ....


1

1 3 4  5  6 7 8

k Ivma.ftre ive.er./.1 f.519•99,-

0.05   -  000  5

0.1 - 00171

02 - 00377
05   --5(1753

0 - 0 /003

10 --•••••;- - (15
15 0/182

2 3 1

1 3 4 5 6 7 8 9 1 2 3  4

."

6 7 8 9 ,0

Figure 3.



456 FOURTH CONGRESS — AERONAUTICAL SCIENCES

The coupling 11 21 coefficient varies considerably within the whole range
of parameter variations considered and these coefficients are smaller from
their classical values for small frequency coefficients and larger when these
values are larger.

The damping coefficients 112 and 122 vary appreciably for smaller values
of the frequency coefficients and behave similarly to R11.

The remaining coefficients show relatively small differences as compared
with their classical values and these are below a few percent for H > 4.

Fip 4 


47.4%
Fig 5

5

05 -

2 3 4 5 5 7 9 1 3 4 5 6 7 8 9 I 2 3 4 5 6 7

k

-0.05

No. of hoe
uSrd

i ,p7HIlue 01 TOPIfielent
' or H- 40

- 0.1508
—0 I

03

— — — — 0 /614

-- . 4976
10 --- -: '




-3.5773

NON As for k ooze to 022 "he KA, of 1,2(o
becomes zero the cOrresporeog ra values rose

lo

Figure 4.

p -502
20 
 je - 75°

10

2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 2 3 4 5 0 1 8 9 10

	

—.—  —H

tkoozioo .6kovor 440ço4-oot

005 .1- 132
or 01 7

0 2 .0.215
05 +02512
10 33
2.0 + 5447
25 	

Figure 5.



INFLUENCE OF GROUND PROXIMITY 457

It is impossible to make at present any definite statements concerning
the effect of the ground proximity on the critical flutter velocity of a tilted
wing. However, as the relatively small coupling moment and force coeffi-
cients R21 and 112change considerably, their influence on flutter, particu-
larly for frequency coefficientsk < 1, should be carefully analyzed at least
for a few typical cases.
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